柴达木盆地盐湖锂矿床成矿过程及分布规律
Lithium Brine Deposits in Qaidam Basin:Constraints on Formation Processes and Distribution Pattern
投稿时间:2018-02-28  修订日期:2018-03-26
DOI:10.12119/j.yhyj.201801002
中文关键词:  盐湖卤水锂矿  锂矿成因  水热活动  西风带水文气候  流域地貌
英文关键词:Lithium brine deposit  Lithium origin  Hydrothermal activity  Westerlies hydroclimate  Watershed geomorphology
基金项目:国家自然科学基金委—青海省联合重点基金项目(批准号:U1407206);国家自然科学基金面上项目(批准号:41471013;41171171)通信作者:柴达木盆地盐湖锂矿床成矿过程及分布规律余俊清1,2,洪荣昌1,2,3,高春亮1,2,成艾颖1,2,张丽莎1,2 (1.中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008; 2.青海省盐湖地质与环境重点实验室,青海西宁 810008; 3.中国科学院大学,北京 100049
作者单位
余俊清 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
青海省盐湖地质与环境重点实验室,青海西宁 810008 
洪荣昌 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
青海省盐湖地质与环境重点实验室,青海西宁 810008
中国科学院大学,北京 100049 作者简介:余俊清,,博士TUD, Germany,研究员,博导,专业研究方向:地球化学、第四纪地质、湖泊沉积与环境变化.E-mail:junqyu@isl.ac.cn 
高春亮 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
青海省盐湖地质与环境重点实验室,青海西宁 810008 
成艾颖 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
青海省盐湖地质与环境重点实验室,青海西宁 810008 
张丽莎 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
青海省盐湖地质与环境重点实验室,青海西宁 810008 
摘要点击次数: 1572
全文下载次数: 1288
中文摘要:
      柴达木盆地盐湖蕴藏230万吨锂,集中分布在别勒滩、东西台等四个 盐湖, 占我国卤水锂资源总量的80%,战略资源地位不言而喻。近年来提锂技术及工程化研究倍受重视, 而对盐湖锂矿成因和分布规律的了解凸显不足, 锂矿资源流失严重与之不无关联. 研究查明, 昆仑山高温热泉群含锂泉水长期注入洪—那河水流入终端盐湖,蒸发富集成矿;锂的年输入通量748.8吨,结合区内盐湖锂矿总储量保守估算,成矿期始于14 ka BP之后; 洪—那河水早期主要流向别勒滩, 在山前冲积扇向北推进、扇前河改道北流后,方才形成含锂河水当前分配格局。据此,破解了别勒滩锂矿在研究区储量最大的原由. 还查明了锂矿床仅在别勒滩区段而在达布逊等三个盐湖区不能成矿的原因. 阐明了锂的来源与新生代火山喷发岩、深部岩浆房、昆仑大断裂活动有关,以及含锂热水持续远程输送至盐湖成矿的地貌和水文气候动因. 企业应当根据锂的分布规律和矿床特征,迅速转变钾肥生产模式。
英文摘要:
      :S Salt lakes in Qaidam Basin contained 2.3 million tunes lithium, most of which were reserved in Bieletan, DongTaijinaier, XiTaijinaier and Yiliping, accounting for nearly 80% brine lithium found in China. In the past decade great attention has been paid to the study of extraction methods and manufacturing technology for the strategic resource, but studies on the origin and mode of formation of the lithium brine deposit remained limited. This has partially led problems regarding protection from some losses of Li in the manufacturing processes of potash production. Our recent investigation found that (1)~150 hot-spring vents of a hydrothermal fields provide Li-rich water as the distal source of lithium transported by H-N River runoff draining into terminal saline lakes where Li-brine deposit was formed by a long-term evaporative enrichment process. (2) The beginning of Li-brine deposit formation was not earlier than 14 ka BP, estimated based on the Li-flux of 748.8 t/a and total Li reserve in salt lakes. (3) Li-bearing waters of H-N River drained most into Senie Lake and Bieletan Playa during the early stage of Fan I northward progradation and the present-day distribution pattern of Li-bearing water commenced following Taijinaier River shifted its water course draining toward DT, XT and Yiliping.The geomorphic evidence sheds light on the cause of more than half of the total Li-resource reserved in Bieletan.The puzzle regarding why the Dabuxun adjacent to Bieletan had no Li-deposit is solved by finding the evidence that Bieletan was an isolated basin from Dabuxun due to a subsurface rise, which blocked passage of Li-bearing water. We found evidence that the origin of Li is associated with Cenozoic volcanics, the function of a deep-underground magmatic chamber and neotectonic activities of the Kunlun Fault. The formation of the Li-brine deposit was overall enabled by distal supply of lithium via H-N River and the contrasting hydroclimatic conditions between high-altitude Kunlun Mountains and hyperarid Qaidam Basin. The knowledge of understanding the characteristics of the depositional system and distribution pattern of the Li-brine deposit is fundamental and helpful for establishing mature manufactural processes of the co-existing Li- and K-brine deposit.
查看全文  查看/发表评论  下载PDF阅读器
关闭